Large-scale online recommendation systems must facilitate the allocation of a limited number of items among competing users while learning their preferences from user feedback. As a principled way of incorporating market constraints and user incentives in the design, we consider our objectives to be two-fold: maximal social welfare with minimal instability. To maximize social welfare, our proposed framework enhances the quality of recommendations by exploring allocations that optimistically maximize the rewards. To minimize instability, a measure of users' incentives to deviate from recommended allocations, the algorithm prices the items based on a scheme derived from the Walrasian equilibria. Though it is known that these equilibria yield stable prices for markets with known user preferences, our approach accounts for the inherent uncertainty in the preferences and further ensures that the users accept their recommendations under offered prices. To the best of our knowledge, our approach is the first to integrate techniques from combinatorial bandits, optimal resource allocation, and collaborative filtering to obtain an algorithm that achieves sub-linear social welfare regret as well as sub-linear instability. Empirical studies on synthetic and real-world data also demonstrate the efficacy of our strategy compared to approaches that do not fully incorporate all these aspects.
translated by 谷歌翻译
推荐系统在市场中使用时发挥了双重作用:它们可以帮助用户从大型游泳池中选择最需要的物品,并有助于将有限数量的物品分配给最想要它们的用户。尽管在许多现实世界中的推荐设置中,能力限制的流行率普遍存在,但缺乏将它们纳入这些系统设计的原则性方式。在此激励的情况下,我们提出了一个交互式框架,系统提供商可以通过机会主义探索分配来提高向用户的建议质量,从而最大程度地利用用户奖励并使用适当的定价机制尊重容量约束。我们将问题建模为低排名组合的多臂匪徒问题的实例,并在手臂上进行了选择约束。我们采用一种集成方法,使用协作过滤,组合匪徒和最佳资源分配中的技术,以提供一种算法,可证明可以实现次线性遗憾,即$ \ tilde {\ mathcal {\ sqrt {o}}(\ sqrt {\ sqrt {n+m(n+m){n+m(n+m) )rt})$ in $ t $ rounds,用于$ n $用户,$ m $项目和排名$ r $ ney奖励矩阵的问题。关于合成和现实世界数据的实证研究也证明了我们方法的有效性和性能。
translated by 谷歌翻译
在线模仿学习是如何最好地访问环境或准确的模拟器的问题的问题。先前的工作表明,在无限的样本制度中,匹配的确切力矩达到了与专家政策的价值等效性。但是,在有限的样本制度中,即使没有优化错误,经验差异也会导致性能差距,该差距以$ h^2 / n $的行为克隆缩放,在线时刻$ h / \ sqrt {n} $匹配,其中$ h $是地平线,$ n $是专家数据集的大小。我们介绍了重播估算的技术以减少这种经验差异:通过反复在随机模拟器中执行缓存的专家动作,我们计算了一个更平滑的专家访问分布估算以匹配的。在存在一般函数近似的情况下,我们证明了一个元定理,可以减少离线分类参数估计误差的方法差距(即学习专家策略)。在表格设置或使用线性函数近似中,我们的元定理表明,我们方法产生的性能差距达到了最佳$ \ widetilde {o} \ left(\ min(\ min({h^h^{3/2}}}} / {n} ,{h} / {\ sqrt {n}} \ right)$依赖关系,在与先前的工作相比明显弱的假设下。我们在多个连续的控制任务上实施了多个方法的多次实例化,并发现我们能够显着提高策略绩效跨各种数据集尺寸。
translated by 谷歌翻译
在他们的损失景观方面观看神经网络模型在学习的统计力学方法方面具有悠久的历史,并且近年来它在机器学习中得到了关注。除此之外,已显示局部度量(例如损失景观的平滑度)与模型的全局性质(例如良好的泛化性能)相关联。在这里,我们对数千个神经网络模型的损失景观结构进行了详细的实证分析,系统地改变了学习任务,模型架构和/或数据数量/质量。通过考虑试图捕获损失景观的不同方面的一系列指标,我们证明了最佳的测试精度是如下:损失景观在全球连接;训练型模型的集合彼此更像;而模型会聚到局部平滑的地区。我们还表明,当模型很小或培训以较低质量数据时,可以出现全球相连的景观景观;而且,如果损失景观全球相连,则培训零损失实际上可以导致更糟糕的测试精度。我们详细的经验结果阐明了学习阶段的阶段(以及后续双重行为),基本与偶然的决定因素良好的概括决定因素,负载样和温度相同的参数在学习过程中,不同的影响对模型的损失景观的影响不同和数据,以及地方和全球度量之间的关系,近期兴趣的所有主题。
translated by 谷歌翻译
我们解决了有限地平线的模型选择的问题,用于转换内核$ P ^ * $属于一个型号$ \ mathcal {p} ^ * $的offultic公制熵。在模型选择框架中,而不是$ \ mathcal {p} ^ * $,我们被给予了$ m $嵌套的转换内核rested interned内核$ \ cp_1 \ subset \ cp_2 \ subset \ ldots \ subset \ cp_m $。我们提出并分析了一种新颖的算法,即\ EMPH {自适应增强学习(常规)}(\ texttt {arl-gen}),它适应真正的转换内核$ p ^ * $谎言的最小这些家庭。 \ texttt {arl-gen}使用具有价值目标回归的上置信度强化学习(\ texttt {Ucrl})算法作为Blackbox,并在每个时代的开头放置模型选择模块。在模型类上的温和可分离性假设下,我们显示\ texttt {arl-gen}获得$ \ tilde {\ mathcal {o}}的后悔(d _ {\ mathcal {e}} ^ * h ^ 2 + \ sqrt {d _ {\ mathcal {e}} ^ * \ mathbb {m} ^ * h ^ 2 t})$,具有高概率,其中$ h $是地平线长度,$ t $是步骤总数, $ d _ {\ mathcal {e}} ^ * $是ecured维度和$ \ mathbb {m} ^ * $是与$ \ mathcal {p} ^ * $相对应的度量熵。请注意,这一遗憾缩放匹配Oracle的Oracle,它提前了解$ \ mathcal {p} ^ * $。我们表明,对于\ texttt {arl-gen}的模型选择成本是一个附加术语,遗憾是对$ t $的弱点。随后,我们删除可分离假设,并考虑线性混合MDP的设置,其中转换内核$ P ^ * $具有线性函数近似。通过这种低等级结构,我们提出了新颖的自适应算法,用于模型选择,并获得(令人令人令)与Oracle的遗憾相同,具有真正的模型类。
translated by 谷歌翻译
非凸优化的马鞍点避免问题在大规模分布式学习框架中非常具有挑战性,例如联邦学习,特别是在拜占庭工作者的存在。 「庆祝的立方规范化牛顿方法\ Cite {Nest}是避免标准集中(非分布式)设置中的马鞍点的最优雅方式之一。在本文中,我们将立方正规化的牛顿方法扩展到分布式框架,同时解决了几种实际挑战,如通信瓶颈和拜占庭攻击。请注意,由于流氓机器可以在丢失功能的鞍点附近创建\ emph {假本地最小值},因此在丢失函数的鞍点附近,尚未创建拜占机器的存在,避免问题在拜占庭机器的情况下变得更加重要。作为二阶算法,我们的迭代复杂性远低于第一订单对应物。此外,我们使用像$ \ delta $类似的压缩(或稀疏)技术,以便进行通信效率。我们在包括近似(子采样)梯度和黑森州的若干环境下获得理论担保。此外,我们通过使用标准数据集和几种类型的拜占庭攻击进行实验验证了我们的理论调查结果,并在迭代复杂性中获得了25 \%$ 25 \%$的提高。
translated by 谷歌翻译
In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures-arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving optimal statistical performance. A main result of this work is a sharp analysis of two robust distributed gradient descent algorithms based on median and trimmed mean operations, respectively. We prove statistical error rates for three kinds of population loss functions: strongly convex, nonstrongly convex, and smooth non-convex. In particular, these algorithms are shown to achieve order-optimal statistical error rates for strongly convex losses. To achieve better communication efficiency, we further propose a median-based distributed algorithm that is provably robust, and uses only one communication round. For strongly convex quadratic loss, we show that this algorithm achieves the same optimal error rate as the robust distributed gradient descent algorithms.
translated by 谷歌翻译
Graph processing applications are severely bottlenecked by memory system performance due to low data reuse and irregular memory accesses. While state-of-the-art prefetchers using Machine Learning (ML) have made great progress, they do not perform well on graph analytics applications due to phase transitions in the execution and irregular data access that is hard to predict. We propose MPGraph: a novel ML-based Prefetcher for Graph analytics. MPGraph makes three novel optimizations based on domain knowledge of graph analytics. It detects the transition of graph processing phases during execution using a novel soft detection technique, predicts memory accesses and pages using phase-specific multi-modality predictors, and prefetches using a novel chain spatio-temporal prefetching strategy. We evaluate our approach using three widely-used graph processing frameworks and a variety of graph datasets. Our approach achieves 34.17%-82.15% higher precision in phase transition detection than the KSWIN and decision tree baselines. Our predictors achieve 6.80%-16.02% higher F1-score for access prediction and 11.68%-15.41% higher accuracy-at-10 for page prediction compared with the baselines LSTM-based and vanilla attention-based models. Simulations show that MPGraph achieves on the average 87.16% (prefetch accuracy) and 73.29% (prefetch coverage), leading to 12.52%-21.23% IPC improvement. It outperforms the widely-used non-ML prefetcher BO by 7.58%-12.03%, and outperforms state-of-the-art ML-based prefetchers Voyager by 3.27%-4.42% and TransFetch by 3.73%-4.58% with respect to IPC improvement.
translated by 谷歌翻译
Pictionary, the popular sketch-based guessing game, provides an opportunity to analyze shared goal cooperative game play in restricted communication settings. However, some players occasionally draw atypical sketch content. While such content is occasionally relevant in the game context, it sometimes represents a rule violation and impairs the game experience. To address such situations in a timely and scalable manner, we introduce DrawMon, a novel distributed framework for automatic detection of atypical sketch content in concurrently occurring Pictionary game sessions. We build specialized online interfaces to collect game session data and annotate atypical sketch content, resulting in AtyPict, the first ever atypical sketch content dataset. We use AtyPict to train CanvasNet, a deep neural atypical content detection network. We utilize CanvasNet as a core component of DrawMon. Our analysis of post deployment game session data indicates DrawMon's effectiveness for scalable monitoring and atypical sketch content detection. Beyond Pictionary, our contributions also serve as a design guide for customized atypical content response systems involving shared and interactive whiteboards. Code and datasets are available at https://drawm0n.github.io.
translated by 谷歌翻译
Large pretrained Transformer-based language models like BERT and GPT have changed the landscape of Natural Language Processing (NLP). However, fine tuning such models still requires a large number of training examples for each target task, thus annotating multiple datasets and training these models on various downstream tasks becomes time consuming and expensive. In this work, we propose a simple extension of the Prototypical Networks for few-shot text classification. Our main idea is to replace the class prototypes by Gaussians and introduce a regularization term that encourages the examples to be clustered near the appropriate class centroids. Experimental results show that our method outperforms various strong baselines on 13 public and 4 internal datasets. Furthermore, we use the class distributions as a tool for detecting potential out-of-distribution (OOD) data points during deployment.
translated by 谷歌翻译